[lbo-talk] Entering a dark age of innovation

Sujeet Bhatt sujeet.bhatt at gmail.com
Sat Jul 2 22:28:54 PDT 2005


Entering a dark age of innovation 14:00 02 July 2005 NewScientist.com news service Robert Adler

SURFING the web and making free internet phone calls on your Wi-Fi laptop, listening to your iPod on the way home, it often seems that, technologically speaking, we are enjoying a golden age. Human inventiveness is so finely honed, and the globalised technology industries so productive, that there appears to be an invention to cater for every modern whim.

But according to a new analysis, this view couldn't be more wrong: far from being in technological nirvana, we are fast approaching a new dark age. That, at least, is the conclusion of Jonathan Huebner, a physicist working at the Pentagon's Naval Air Warfare Center in China Lake, California. He says the rate of technological innovation reached a peak a century ago and has been declining ever since. And like the lookout on the Titanic who spotted the fateful iceberg, Huebner sees the end of innovation looming dead ahead. His study will be published in Technological Forecasting and Social Change.

It's an unfashionable view. Most futurologists say technology is developing at exponential rates. Moore's law, for example, foresaw chip densities (for which read speed and memory capacity) doubling every 18 months. And the chip makers have lived up to its predictions. Building on this, the less well-known Kurzweil's law says that these faster, smarter chips are leading to even faster growth in the power of computers. Developments in genome sequencing and nanoscale machinery are racing ahead too, and internet connectivity and telecommunications bandwith are growing even faster than computer power, catalysing still further waves of innovation.

But Huebner is confident of his facts. He has long been struck by the fact that promised advances were not appearing as quickly as predicted. "I wondered if there was a reason for this," he says. "Perhaps there is a limit to what technology can achieve."

In an effort to find out, he plotted major innovations and scientific advances over time compared to world population, using the 7200 key innovations listed in a recently published book, The History of Science and Technology (Houghton Mifflin, 2004). The results surprised him.

Rather than growing exponentially, or even keeping pace with population growth, they peaked in 1873 and have been declining ever since (see Graphs). Next, he examined the number of patents granted in the US from 1790 to the present. When he plotted the number of US patents granted per decade divided by the country's population, he found the graph peaked in 1915.

The period between 1873 and 1915 was certainly an innovative one. For instance, it included the major patent-producing years of America's greatest inventor, Thomas Edison (1847-1931). Edison patented more than 1000 inventions, including the incandescent bulb, electricity generation and distribution grids, movie cameras and the phonograph.

Medieval future Huebner draws some stark lessons from his analysis. The global rate of innovation today, which is running at seven "important technological developments" per billion people per year, matches the rate in 1600. Despite far higher standards of education and massive R&D funding "it is more difficult now for people to develop new technology", Huebner says.

Extrapolating Huebner's global innovation curve just two decades into the future, the innovation rate plummets to medieval levels. "We are approaching the 'dark ages point', when the rate of innovation is the same as it was during the Dark Ages," Huebner says. "We'll reach that in 2024."

http://www.newscientist.com/article.ns?id=dn7616



More information about the lbo-talk mailing list