[lbo-talk] I hope you all vote(d) for Obama

Miles Jackson cqmv at pdx.edu
Thu Feb 7 22:37:05 PST 2008


Julio Huato wrote:
> Here's the raw Stata output of an OLS regression: personal income on
> the LHS, age on the RHS with educational attainment, sex,
> race/ethnicity as controls. Data: 2000 PUMS 1% -- i.e. 1% of US pop.
>
> . xi: regress lninct lnage i.wbho female i.ed2
> i.wbho _Iwbho_1-4 (naturally coded; _Iwbho_1 omitted)
> i.ed2 _Ied2_1-6 (naturally coded; _Ied2_1 omitted)
>
> Source | SS df MS Number of obs = 1917265
> -------------+------------------------------ F( 10,1917254) =70138.14
> Model | 746252.953 10 74625.2953 Prob > F = 0.0000
> Residual | 2039912.041917254 1.06397589 R-squared = 0.2678
> -------------+------------------------------ Adj R-squared = 0.2678
> Total | 2786164.991917264 1.45319841 Root MSE = 1.0315
>
> ------------------------------------------------------------------------------
> lninct | Coef. Std. Err. t P>|t| [95% Conf. Interval]
> -------------+----------------------------------------------------------------
> lnage | .6809353 .0018016 377.96 0.000 .6774042 .6844664
> _Iwbho_2 | -.1009164 .0025144 -40.13 0.000 -.1058446 -.0959882
> _Iwbho_3 | .067665 .0026772 25.27 0.000 .0624178 .0729122
> _Iwbho_4 | -.106419 .0034298 -31.03 0.000 -.1131414 -.0996967
> female | -.5884933 .0014952 -393.59 0.000 -.5914238 -.5855627
> _Ied2_2 | .101995 .0035272 28.92 0.000 .0950818 .1089082
> _Ied2_3 | .6848738 .003237 211.58 0.000 .6785294 .6912182
> _Ied2_4 | .9233323 .0032727 282.13 0.000 .9169178 .9297467
> _Ied2_5 | 1.377962 .0035755 385.39 0.000 1.370954 1.38497
> _Ied2_6 | 1.617381 .0039739 407.00 0.000 1.609592 1.62517
> _cons | 6.74084 .0078632 857.27 0.000 6.725429 6.756252
> ------------------------------------------------------------------------------
>
> Even this regression can only explain 27% of the variation of U.S.
> personal income. Yet age comes up highly significant. Only sex and
> higher ed (college and grad/professional school) come up as more
> significant than age.

The value of t does not tell you "how significant" a predictor is in a regression model. I think the question you want to answer is, "Is age a good predictor of personal income, after controlling for the other sociodemographic variables in the model?" Try removing age from the model and compare r-squared with and without age. That will give you a meaningful estimate of the unique predictive power of age.

Miles



More information about the lbo-talk mailing list