The Future of CPUs

Kelley kwalker2 at gte.net
Sat Feb 2 07:04:00 PST 2002


The Future of CPUs in Brief Technology Review, January 28, 2002

By David Essex

Today silicon is king. But if computers are going to keep up with Moore's law, they'll need something better.

Silicon wires six nanometers wide (shown) could be combined with organic molecules in CPUs millions of times more powerful than the all-silicon chips in today’s computers. (Image courtesy of HP Labs Quantum Science Research Group.)

In the world of computers, silicon is king. The semiconducting element forms regular, near-perfect crystals into which chipmakers can carve the hundreds of millions of features that make the microchips that power the processors. Technological improvements let chipmakers cut the size of those features in half every 18 months—a feat known as Moore's law, after Intel cofounder Gordon Moore. Today, that size hovers around 180 nanometers (180 billionths of a meter), and researchers expect to push below 50 nanometers within a decade. But that's about as far as silicon can go: below that quantum physics makes electrons too unruly to stay inside the lines. If computers are to keep up with Moore's law, they will have to move beyond silicon. After a couple of decades of theorizing, computer scientists, bioengineers and chemists in the mid-1990s began lab experiments seeking alternative materials for future CPUs and memory chips. Today, their research falls into three broad categories: quantum, molecular and biological computing.

In the field of quantum computing, researchers seek to harness the quantum effects that will be silicon's undoing. Scientists succeeded in making rudimentary logic gates out of molecules, atoms and sub-atomic particles such as electrons. And incredibly, other teams have discovered ways to perform simple calculations using DNA strands or microorganisms that group and modify themselves.

Molecular Building Blocks

In one type of molecular computing (or nanocomputing), joint teams at Hewlett Packard Co. and UCLA sandwich complex organic molecules between metal electrodes coursing through a silicon substrate. The molecules orient themselves on the wires and act as switches. Another team at Rice and Yale universities has identified other molecules with similar properties.

Normally, the molecules won't let electrons pass through to the electrodes, so a quantum property called tunneling, long used in electronics, is manipulated with an electric current to force the electrons through at the proper rate. If researchers can figure out how to lay down billions of these communicating molecules, they'll be able to build programmable memory and CPU logic that is potentially millions of times more powerful than in today's computers.

Molecular researchers like the HP/UCLA team, however, face a challenge in miniaturizing their current wiring technology—nanowires made from silicon strands—from several hundred to approximately 10 nanometers. Carbon nanotubes are promising substitutes. The rigid pipes make excellent conductors, but scientists must figure out how to wrangle them into the latticework needed for complex circuitry. "We've shown that the switching works," says HP computer architect Philip Kuekes. "But there is still not as good an understanding of the basic mechanism so that an engineer can design with it." Hewlett Packard and UCLA have jointly patented several techniques for manufacturing of molecular computers, most recently in January of 2002.

More at MIT's Technology Review <http://www.techreview.com/articles/print_version/essex012802.asp>



More information about the lbo-talk mailing list